-
W
(V)
[
=
18
=
-
-
r
It
n

ALUL UUILLLELELCEs ~EW 1ULK, INLy MdLUll Z47—APLAL Z,

1277

UAL-BASED SIMULATION ENVIRONMENT FOR
SPALLATION NEUTRON SOURCE RING®

N. Malitsky', J. Smith, J.Wei, BNL, Upton, NY

Abstract

This paper outlines the major activities and applications of
the Unified Acceierator Library environment for the
Spallation Neutron Source (SNS) Ring.

1 BACKGROUND

The Unified Accelerator Librariesf1] are designed as a
customizable and extendible environment for developing
diverse accelerator applications. Its main architectural
principle is a separation of physical entities and
mathematical abstractions from algorithms. The
accelerator algorithms are implemented as classes that
share data via Common Accelerator Objects (Element,
Bunch, Twiss, etc.). This highly flexible structure has
facilitated selecting and implementing more appropriate
software design patterns and accelerator approaches,
supporting project-specific requirements, and connecting
the UAL applications with heterogencous data sources. At
this time, the UAL joins several object-oriented
accelerator programs: PAC (Platform for Accelerator
Codes), TEAPOT (Thin Element Program for Optics and
Tracking), ZLIB (a numerical library for differential
algebra), and ALE (Accelerator Libraries’ Extensions).
The Application Programming Interface (API), written in
Perl, provides a universal homogeneous shell for
integrating and managing all these components and
project extensions. The UAL environment has been
successfully applied to several accelerator projects: LHC,
RHIC, and CESR. This paper outlines the major activities
and applications for the new project, Spallation Neutron
Source (SNS) Ring.

2 SIMULATION ACTIVITIES

Tha QNQ

eveenlo reene ey

LC SN u"g dynamics pr‘"eﬁts a CompicX nbination
of several physical effects and dynamical processm[2]

Cama Af tham ~h oo Rald aren nd micalianmants ara
SOMIC O1 Ncm, SucCi as 1iciaG SImors and uuaausuul\;uw, aiv

supported in general-purpose accelerator codes. Other

effantc

such as space
CIicCLs, suc spad

charaa
AR “@ao s \ﬂll‘l.ls\t
grazing, are actual only for high intensity hadron rings and

distributed into a set of indenendent snecialized nrosrams
cismouieg 1nle a s¢t or 1ngepencent specl programs

(Table 1). The mismatch among diverse data formats,

units. and notations comnlicates the usage of these

RBIRINS, LA PrVRNS Wea,

programs and increases the risk of errors and
misinterpretations, Besides, the accurate simulation of the

very low beam loss (10) requires the simultaneous

a; nrl collimator surface
COumavor 1aCT

* Work performed under the auspices of the US DOE
" Email: malitsky@bnl.gov

consideration of several different effects in a single
scenario. The UAL open environment addresses all these
tasks. It supports the incremental development of
independent components and their configurable packaging
into the accelerator applications. For the SNS project, the
UAL is being extended with the following features:
injection painting, collimator, and space charge. To
facilitate the implementation and employment of new
modules we have developed a benchmark infrastructure
that provides the consistent interfaces among alternative
accelerator approaches:

E MAD Lasttice

,JL\ e — — o
Q;W(MAD) (DIMA ACCH] SAMBA
— ‘ ‘ ‘ l
Timear matrix +
Second | order marrix v !
———
[Boam distribution ~ Bown distzibution v

2.1 Injection Painting

During the multi-turn injection into the SNS ring, protons
are painting over a large phase space volume in order to
reduce the space charge tune shifts and to minimise the
number of traversals through the stripping foil. The
ACCSIM code offers the most consistent approach for
optimization and simulation of these dynamical processes.
However, the control of the different scenarios is hidden
behind of the ACCSIM input language impeding the
inclusion of new physical effects (field errors,
misalignments, efc.). In UAL, all these dynamical
processes are programmed directly with the Perl API that
provides an unlimited access to the UAL core packages,
project-specific extensions, and a wide variety of general-
purpose supporting tools and applications (Graphics, GUL,
etc.).

2.2F ield Errors, Misalignments, Correction

In the UAL, all accelerator elements are located in the
central repository, the Standard Machine Format (SMF).

The SMF supports both the hierarchy of beam lines and

generic elements as well as parameters associated with
individual elements of the as-installed machine. Magnetic
errors and misalignments are implemented as fine-grained
sets of element attributes and can be assigned to an
arbitrary design element. The SMF structure is neutral to
accelerator approaches, and the accelerator physicist can
employ either the UAL core modules or local extensions
(e.g. IR filter for RHIC and LHC [9]). For the simulation
of nonlinear magnetic fields and misalignments, we are
using the TEAPOT library that provides a rich set of
simulation tools (conventional element-by-element tracker
and DA integrator) and correction algorithms (tuning,
closed orbit correction, chromaticity fitting, and global
decoupling).

2.3 Collimator

The collimator is designed to prevent spreading up beam
halo mto the SNS ring tunnel and localized it at a level
from 10" t0 10" in one controlled place. Its relative sizes
and forms depend on many factors, such as an injection
painting scheme, lattice parameters, and others. Then the
simulation model has to be adaptable to an arbitrary
combination of lattice and collimator variants. It can be
achieved by implementing the collimator system as an
insertion device and splitting the one-urn tracking
procedure into three steps: propagating particles (e.g.
using TEAPOT module) from the injection point to the
collimator system, applying the collimator algorithms, and
completing the turn by following particles back to the
injection point. In the UAL environment, this scenario is
controlled directly from the Perl script, and it is open for
arbitrary representations of the collimator module. For
example, this module can be implemented as a local
adapter to the independent FORTRAN program (e.g.
LAHET) or the HEP C++ shared libraries (e.g. GEANT
4). This solution looks very interesting from the
perspective of integrating the accelerator and high energy
physics software. However, its complete implementation
assumes the significant overhead for this particular task.
Then we are considering the ACCSIM approach that
provides an optimal set of algorithms for particle-target
interactions (Landau and Bethe-Bloch energy loss
distributions, Moliere multiple scattering, and nuclear
interactions).

2.3 Space Charge

The space charge effect has a large impact on the beam
dynamics and halo growth in the SNS ring and has to be
included in the common model for evaluating the beam
distribution and uncontrolled beam loss in the ring tunnel.
The implementation of the 3D space charge effects is a
difficult task because it involves the trade-off between the
performance and accuracy of available algorithms. Then
there is a need in a configurable module that enables the
exchange of several alternative approaches. The UAL
framework will address this task by providing the uniform

mechanism for assembly and reuse of independently
developed algorithms [11].

2.5 Fringe Field Models

Since the aperture of the ring magnets is comparable to

thoa PRSPy £3 H
the ulagﬁcuu field impact must be

considered. Taylor maps extracted from fringe field

MMaerul 1a -II
Lvlmyhlclluj} Wwin

lanath Frinon
Wiigui, ITnge

madale (oo ha incnrnaratad intn
HIULC L \C.s UL nvulpuiawd aaws
element—by—element tracking. This approach has been

1 TTAT
employed in previous UAL applications for simulating

RHIC helical dipoles and CESR wigglers.
2.6 End-to-End Simulation

The SMF structure allows one to consider several
different lattices in the same process. This feature is very
important for optimization of IR sections, injection and
extraction systems. In the SNS project, we plan to
concatenate various sections of machine lattices (e.g.
HEBT line + ring + RTBT line) for the end-to-end

I n
simulation of particles with various charge states (H , H ,
H).

2 ITAT TDARMEITWND
J uaur K

The UAL framework is a necessary and logical step in the
UAL evolution. It intends to offer a single object-oriented
integration environment for compatible and independent
implementation of diverse accelerator applications. This
will enable accelerator scientists and software developers
with different kinds and levels of skill to participate in the
common development process and will promote selection,
sharing, and standardization of the most effective
accelerator approaches and solutions. The UAL
framework is being developed using the component-
oriented technology and provides the following systems
[11}):
e uniform mechanism for assembly and reuse of
independently developed accelerator aigorithms;
¢ uniform infrastructure for optimization and correction
approaches
The off-line SNS Ring Simulation Facility is considered
the first application of this infrastructure.

4 INT

{GRATION WITH ACCELERATOR
CONTROL
The value of theoretical algorithms depends to a large

tant th
extent on the possibility to employ them in a

raal
réa:

experiment. In the past, simulation programs and control

“yste"ﬂ apphcancns were dnunlnmd and ﬂpnlnvnrl as two

independent products. We mtend to merge these efforts in

the sunalp direction based on the online Accelerator

Je1t4 o) RS Fat el 1101

Simulation Facility (Fig.1). The concept of online

mnrlpll!ng is becoming very popular in the accelerator

L9 8 1e2 11 Ve P-4 LSl gooieiatll

community because it provides them with new interesting
Pncmhllmec

¢ development and validation of control system

annlications before the commissioning stase based

apputauiiis Crilab Wi SUNLLnnsswUnn B Swigt Uastu

only on the “virtual” accelerator,

e online analvsis and comnarison of runtime
e analysis and companson of runtime

accelerator parameters with theoretical models

dnnng r‘nmmmmnmng and nnPrnhnl_'l .

alaidp CRORNINNISSIUNEN L OpLiallv

Accelerator

Firew
y
LPICS)
l‘ -
| 4
l sy s‘”er/.
(Tava/C++) e

Internet Luterface™ ay W
(Tava, XMI) Graphical User Interface
(Java, XMLy

Figure 1: The UAL-based SNS Simulation Facility.

The SNS online facility will have a multi-level

Lta_ naooo

arcniecure. l'\t I.ll.lb Lllllc,

bhoo femsalasnmend

E..l'l\.,o nad 1pieiicniwcu I.llC
lowest layer a homogeneous interface to physical devices.

HUWUVCI l:‘rn.,o 54\&!141!55 U-dld L]PCD arc 6o sUuCllb f\)l

object-onented higher level applications, such as
ilatinn and osarrantian madnlac and raanira an
auuulauuu a1l VULIVA UV LIV ULV DO,y ailg l\ﬂull\f Qals

additional layer to map device parameters into accelerator

Table 1: Accelerator programs used in the SNS project.

domain constructions. Until recently, there has not been a

nortable solution for thig prnhlpm At this time, several

PVIEUIC SLiuIVn U WS (49 01w A il wEiil, O

industrial technologies address this task by providing new

r-nmmnmrvnhnn t‘nnnpntc

vl anon COnLCy

object and the CORBA Object by-Value semantics, that

allow develoners to nnplv cPamlPulv the same nhmpt-

CUVLROPLIs 10 appsy =Stalllicss: 2C sailllc

oriented models and patterns to local sunulatxon programs
and distributed control svstems. We plan to evaluate these

PR AL LA LR LLLES R Al e L P 0 Cvallall LI

and other industrial technologies from the perspective of

their m_tggmhnn with the UAIL. and EPICS environments,

such as the Java Serializable

We thank D.Abell, J.Becbe-Wang, M. Blaskiewicz,
F.Jones, J.Galambos, H.Lu dew1g AL uccio, S.Machida,

[1] N.Malitsky and R.Talman, AIP 391, 1996.

[2] J.Wei et al, these proceedings.

[3] L.Schachinger and R.Talman, Particle Accelerators, 22, 35(1987).
{4] H.Grote and F.C.Iselin, CERN/SL/90-13.

l'ﬁ] R.V Servranckx, et al., SLAC Report 285 UC-28

T2NCKX, &7 LA REpon 280

[6] F.W.Jones, TRIUMF Design Note TRI-DN-90-17, 1
[7] L. Galambos, et al. AIP 448, 1998.

[81 S.Machida, Nucl. Instrum. Methods, A309, 43(1991).
[9] J.Wei, at al, these proceedings.

[10] A.Dragt et al.. MaryLie 3.0, 1999.

[11} N.Malitsky and R.Talman. ICAP98, 1998.

UAL FTPOT MADS | DIMAD ACCSIM SAMBA SIMPSONS

(1] (3] [4] (5] [6] (71 (8]
Interface PERL API FTPOT MAD DIMAD ACCSIM SuperCode SIMPSONS
MAD elements Yes Yes Yes Yes Yes Yes Yes

(via nodes) (via nodes)

Errors Yes Yes Yes Yes No TBC Yes
Dynamic Processes Yes No No No Injection Yes Bp and RF

(via PERL) (via SuperCode)
Tracking Thin lenses | Thinlenses | Lie Simplectic Linear matrices | Linear matrices | Thin lenses

_algebra | TRANSPORT | + node -lenses + node-lenses
Mapping Any order Second Third Second order Linear order Linear order No
[oroer

Space Charge TBC No No D D 2D and 3D
Analysis (Twiss,...) Yes Yes Yes Yes No TBC No
Lattice Optimization | TBC No Yes Yes No TBC No
Correction(Orbit,...) Yes | Yes Yes Yes No TBC No
Concatenation of Yes No No No No No No
several lattices
Support of third party | Yes No No Neo No Yes No
extensions
Painting Yes No No No Yes Yes No
Injection Foil Yes No No No Yes Yes No
Collimator April 99 No No No Yes No No

